If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-12v=-32
We move all terms to the left:
v^2-12v-(-32)=0
We add all the numbers together, and all the variables
v^2-12v+32=0
a = 1; b = -12; c = +32;
Δ = b2-4ac
Δ = -122-4·1·32
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4}{2*1}=\frac{8}{2} =4 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4}{2*1}=\frac{16}{2} =8 $
| 9x+27=x+6 | | (5x-7)=(2x-7) | | 22-3w=88 | | 1/q+1/2q=1/12 | | r/2+6=9 | | 125+30x=215+20x | | 6x-35-3x+53=120 | | 9(x+3)=x+6 | | 6(3+-2)=4x-2+4x | | 3=2d=9 | | 6x-35-3x+53=270 | | 10=w/3+7 | | u/3+3=6 | | 125-30x=215-20x | | x^2=x-20=0 | | 29x^2-14x-16=0 | | r^2+3r=2=0 | | 40x-160=440 | | 1/2+3y=1 | | X=y=4 | | 3x-7=120 | | 3m=1/4 | | 2x−7=−2x+1 | | 2(x-4)+7=1 | | 20(2x−8)=440 | | 11x/7+4=6 | | 6x+5=4x+45=360 | | 7/5+3m/2=35/6 | | 6(7+11p)=-18+6p | | 3.5+10m=8.43 | | 159=32-y | | 4(3t+4)-20=17+5t |